Axial Force Transfer of Buckled Drill Pipe in Deviated Wells
SPE/IADC 119861Menand S., Sellami H., Bouguecha A., Mines ParisTech, Isambourg P., Total SA, Simon C., DrillScan
Abstract
Axial force transfer is an issue in deviated wells where friction and buckling phenomenon take place. The general perception of the industry is that once drill pipe exceeds conventional buckling criteria, such as PaslayDawson, axial force cannot be transferred down-hole anymore. This paper shows that, even though buckling criteria are exceeded, axial force transfer could be still good if drill pipe is in rotation. On the contrary, there exists sliding operations where lockup is observed, due to buckling, even though standard buckling criteria are not exceeded. This paper is intended to show and explain how axial force is transferred down-hole in many simulated field conditions: sliding, rotating, with or without dog legs. These new results have been obtained from an advanced model dedicated to drill string mechanics successfully validated with laboratory tests.
This paper will show applicable results for practical well operations where axial force transfer is an issue. These results will enable to give some guidelines to help the drilling engineer to select cases where conventional buckling criteria should be used cautiously. Indeed, simultaneous torque-drag-buckling calculations show that tubular can tolerate significant levels of compression, enabling to provide weight transfer to the drill bit, even though drill pipe is buckled. Others examples, in contrast, show that standard buckling criteria cannot predict the occurrence of buckling that may cause tubular lockup while tripping in the hole.
The applications of these results are numerous for all deviated wells such as horizontal or extended reach drilling wells. This paper should contribute to reduce unpredictable lock-up situations and improve axial load transfer performance.
Related Technical Publications
-
Casing Wear and Stiff String Modeling Sensitivity Analysis – The Contribution of DP Pipe-Body and Tool-Joint on Casing Contact
Abstract Casing wear due to pipe body and tool-joint of Range 2 and Range 3 DP is compared using a stiff-string torque & drag &…
-
Fatigue Tracking for Mud Motors and MWDs in Unconventional Wells
Abstract As the industry continues to drill increasingly complex wells, the demand put on drilling equipment has increased and will continue to increase. Preventive maintenance…
-
Learning Curve Benefits Resulting From the Use of a Unique BHA Directional Behavior Drilling Performances Post-Analysis
Abstract With the current marketโs high prices for drilling units and sophisticated directional and formation assessment services, low systems reliability or poor directional performance in…
Related Case Study
-
By Mitigating Motor Failures and the Associated Time Lost, Operator Saved $105,000 Per Well
H&P Technology Helped Increase Lateral Slide ROP by 120% and Make a One-Run Lateral Curve Possible
-
Operator saves 2.38 days of drilling time, equating to a savings of over $140,000 per well
Head-to-head comparison proves science-based directional drilling approach enhanced bit and BHA integrity and reduced time to target Challenge A major operator was drilling in the…
-
Operator increases rotating ROP and enhances bit and BHA integrity with Flexdrillยฎ technology
ChallengeAn operator drilling out of the Meramec formation in Oklahoma historically struggled with suboptimal rates of penetration (ROP) due to stick slip and whirl. It…