Validation of Directional Survey Data Against Positional Uncertainty Models
SPE-194179-MSMarc Willerth; Stefan Maus
Abstract
Positional uncertainty is a critical component of managing collision risk while drilling. Ensuring that survey data meet the requirements of their uncertainty models has historically required complicated analysis. Most consumers of survey data are not experts and knowing when escalation is required in a high-risk situation can be unclear. This problem will increase as more data is evaluated by automated decision-making systems. Two novel methods are proposed to analyze sets of survey data against uncertainty models with the intent to answer the questions: “Is it safe to continue drilling” and “Does this wellbore need to be resurveyed?”.
The proposed methods evaluate a survey set using the error sources, error magnitudes, and error propagations contained in positional uncertainty models. A quality control error covariance matrix is constructed, and the set is evaluated against it. Two statistical outputs are generated: a statistical distance that explains how well an additional survey fits with the existing survey data, and an overall survey assessment that describes the likelihood of an error-model compliant system producing the observed dataset.
The methods are used to evaluate downhole magnetic survey data that was flagged after evaluation by subject matter experts, but traditional quality control measures had failed to identify as problematic. Errors that do not fit the expectations of the error model are flagged in a way that is apparent to a non-expert user and can be integrated into an automated alert system. How to include these procedures in drilling workflows is discussed, including when escalation to a subject matter expert is required.
A system is proposed where, with minor modification to existing error models, this analysis can be automated for wellbore surveys of all kinds. Additional discussion is included on how these methods will fit into the upcoming API recommended practice on wellbore surveying.
Related Technical Publications
-
Casing Wear and Stiff String Modeling Sensitivity Analysis – The Contribution of DP Pipe-Body and Tool-Joint on Casing Contact
Abstract Casing wear due to pipe body and tool-joint of Range 2 and Range 3 DP is compared using a stiff-string torque & drag &…
-
Fatigue Tracking for Mud Motors and MWDs in Unconventional Wells
Abstract As the industry continues to drill increasingly complex wells, the demand put on drilling equipment has increased and will continue to increase. Preventive maintenance…
-
Learning Curve Benefits Resulting From the Use of a Unique BHA Directional Behavior Drilling Performances Post-Analysis
Abstract With the current marketโs high prices for drilling units and sophisticated directional and formation assessment services, low systems reliability or poor directional performance in…
Related Case Study
-
By Mitigating Motor Failures and the Associated Time Lost, Operator Saved $105,000 Per Well
H&P Technology Helped Increase Lateral Slide ROP by 120% and Make a One-Run Lateral Curve Possible
-
Operator saves 2.38 days of drilling time, equating to a savings of over $140,000 per well
Head-to-head comparison proves science-based directional drilling approach enhanced bit and BHA integrity and reduced time to target Challenge A major operator was drilling in the…
-
Operator increases rotating ROP and enhances bit and BHA integrity with Flexdrillยฎ technology
ChallengeAn operator drilling out of the Meramec formation in Oklahoma historically struggled with suboptimal rates of penetration (ROP) due to stick slip and whirl. It…