Modelling the Economic Impact of Spacing Uncertainty in Unconventional Long Laterals Due to Common Survey Practices
SPE-208735-MSKatherina Cheng; Nicolas Cosca; Minsu Jose; Marc Willerth
Abstract
Finding an optimal lateral spacing is crucial to maximizing the return on investment for unconventional assets. The estimates regarding these lateral spacings were made for various plays; however, in a general sense, they assumed that the wellbores were precisely drilled and surveyed (Bharali et. al., 2014; Lalehrokh & Bouma, 2014). Wellbore positions have potentially large uncertainties and recent studies demonstrate that these uncertainties are even larger than previously assumed (Love, et. al, 2020).This study combines the previous work completed on spacing uncertainty with a reservoir simulation model to better quantify the losses caused by positional uncertainty, while exploring the sensitivity of said losses in relation to the changing lateral length, well spacing and survey accuracy allowing for future optimal field development.
A previous method of simulating reservoir losses due to survey uncertainty, proposed by Maus & DeVerse (2016) and the major basins reservoir simulation using empirically derived positional uncertainty models generated by analyzing survey data from thousands of wells by Love et. Al., (2020) provided the framework for this study. The estimations for typical production losses due to survey uncertainty were produced from simulations and compared to similar simulations using industry standard error models. In all cases, a baseline simulation was run, estimating production losses observed on historical wells alongside additional simulations to determine the sensitivity of losses on future wells against lateral length (5,000 – 15,000 ft), lateral spacing (220 – 880 ft) and employed survey management techniques. The effect of estimated losses and deviations from expectations using standard error models were explored, including an analysis of average production losses, extreme events (such as maximum modeled production loss and number of lateral crossings), and the impact of uncertainty reduction techniques commonly employed through survey management.
Related Technical Publications
-
Casing Wear and Stiff String Modeling Sensitivity Analysis – The Contribution of DP Pipe-Body and Tool-Joint on Casing Contact
Abstract Casing wear due to pipe body and tool-joint of Range 2 and Range 3 DP is compared using a stiff-string torque & drag &…
-
Fatigue Tracking for Mud Motors and MWDs in Unconventional Wells
Abstract As the industry continues to drill increasingly complex wells, the demand put on drilling equipment has increased and will continue to increase. Preventive maintenance…
-
Learning Curve Benefits Resulting From the Use of a Unique BHA Directional Behavior Drilling Performances Post-Analysis
Abstract With the current marketโs high prices for drilling units and sophisticated directional and formation assessment services, low systems reliability or poor directional performance in…
Related Case Study
-
By Mitigating Motor Failures and the Associated Time Lost, Operator Saved $105,000 Per Well
H&P Technology Helped Increase Lateral Slide ROP by 120% and Make a One-Run Lateral Curve Possible
-
Operator saves 2.38 days of drilling time, equating to a savings of over $140,000 per well
Head-to-head comparison proves science-based directional drilling approach enhanced bit and BHA integrity and reduced time to target Challenge A major operator was drilling in the…
-
Operator increases rotating ROP and enhances bit and BHA integrity with Flexdrillยฎ technology
ChallengeAn operator drilling out of the Meramec formation in Oklahoma historically struggled with suboptimal rates of penetration (ROP) due to stick slip and whirl. It…