Micro Dogleg Detection with Continuous Inclination Measurements and Advanced BHA Modeling
SPE-183299-MSS. Menand, K.A. Mills, DrillScan US Inc.; R.Suarez, Nabors Intl.
Abstract
Micro doglegs are a natural effect of any vertical or directional well that can explain a wide variety of down hole problems, from additional torque and drag to an inability to run completions. These doglegs are inherent to the rock drilling process and can generate borehole spiraling in vertical sections or sliderotary pattern when using steerable mud motor in horizontal sections. Standard surveying every 95ft or so cannot detect these micro doglegs and only gives a partial look at the actual well path. This paper presents the results of a case study showing how accurate downhole measurements combined with advanced drill string modeling can detect borehole tortuosity and better quantify the down hole drilling efficiency.
A trajectory prediction model able to calculate the inclination and azimuth each foot or so has been developed to estimate micro doglegs using standard surveys, bottom hole assembly (BHA) data and steering parameters. In the demonstrated case, a slick motor assembly was used to drill a horizontal well in a single run. The predicted trajectory was then compared to actual continuous inclination data gathered by the measurement while drilling tool during drilling and showed a good match between the predicted trajectory and the actual drilled trajectory. Transitions between sliding and rotating modes are highlighted by micro doglegs and downhole forces, such as bending moment close to the bit, are well reproduced by the model.
This new methodology combining downhole data measurements with drill string modeling analysis highlights the potential for drilling optimization and wellbore placement. Having a better definition of the well path is very critical for torque and drag analysis and wellbore placement. This paper presents for the first time a comparison between continuous survey measurements and computer modeling to highlight the importance of micro-doglegs in evaluating drilling performance.
Related Technical Publications
-
Casing Wear and Stiff String Modeling Sensitivity Analysis – The Contribution of DP Pipe-Body and Tool-Joint on Casing Contact
Abstract Casing wear due to pipe body and tool-joint of Range 2 and Range 3 DP is compared using a stiff-string torque & drag &…
-
Fatigue Tracking for Mud Motors and MWDs in Unconventional Wells
Abstract As the industry continues to drill increasingly complex wells, the demand put on drilling equipment has increased and will continue to increase. Preventive maintenance…
-
Learning Curve Benefits Resulting From the Use of a Unique BHA Directional Behavior Drilling Performances Post-Analysis
Abstract With the current marketโs high prices for drilling units and sophisticated directional and formation assessment services, low systems reliability or poor directional performance in…
Related Case Study
-
By Mitigating Motor Failures and the Associated Time Lost, Operator Saved $105,000 Per Well
H&P Technology Helped Increase Lateral Slide ROP by 120% and Make a One-Run Lateral Curve Possible
-
Operator saves 2.38 days of drilling time, equating to a savings of over $140,000 per well
Head-to-head comparison proves science-based directional drilling approach enhanced bit and BHA integrity and reduced time to target Challenge A major operator was drilling in the…
-
Operator increases rotating ROP and enhances bit and BHA integrity with Flexdrillยฎ technology
ChallengeAn operator drilling out of the Meramec formation in Oklahoma historically struggled with suboptimal rates of penetration (ROP) due to stick slip and whirl. It…