Magnetic Referencing and Real-Time Survey Processing Enables Tighter Spacing of Long-Reach Wells
SPE-175539-MSStefan Maus; Shawn Deverse
Abstract
Positional uncertainty in wellbores is caused by numerous error sources and propagates in magnitude along the measured depth of the wellbore. This can be problematic when planning or drilling closely spaced long reach wells while still satisfying collision avoidance policies. The ellipses of uncertainty associated with surveys acquired by standard Measurement While Drilling (MWD) tools are often too large to enable adequate separation factors between wells. MWD tools are instruments mounted inside the bottom hole assembly (BHA) and use an accelerometer and magnetometer sensor package to determine the inclination and magnetic azimuth while drilling. The magnetic azimuth is used to calculate a true (geographic) azimuth by adding the declination angle from a geomagnetic reference model. The largest sources of error in standard MWD survey are inaccuracies in the global geomagnetic reference model and magnetic interference from the BHA. These error sources can be reduced significantly by using a local geomagnetic In-Field Referencing (IFR) model and by subsequently applying multistation analysis (MSA) corrections to the raw survey measurements.
IFR models are computed from locally acquired aeromagnetic measurements of the geomagnetic field. By solving LaPlace’s equation, a 3D magnetic model of the local crustal magnetic anomalies is produced. This greatly improves the resolution and accuracy of the geomagnetic reference field used to determine wellbore direction. Once the geomagnetic reference field is accurately specified by IFR, magnetic interference from the drill string can be identified and removed through MSA correction. Decreasing the ellipses of uncertainty of the wellbore position will reduce collision risk, improve confidence in geological modeling, and maximize reservoir recovery.
Related Technical Publications
-
Casing Wear and Stiff String Modeling Sensitivity Analysis – The Contribution of DP Pipe-Body and Tool-Joint on Casing Contact
Abstract Casing wear due to pipe body and tool-joint of Range 2 and Range 3 DP is compared using a stiff-string torque & drag &…
-
Fatigue Tracking for Mud Motors and MWDs in Unconventional Wells
Abstract As the industry continues to drill increasingly complex wells, the demand put on drilling equipment has increased and will continue to increase. Preventive maintenance…
-
Learning Curve Benefits Resulting From the Use of a Unique BHA Directional Behavior Drilling Performances Post-Analysis
Abstract With the current marketโs high prices for drilling units and sophisticated directional and formation assessment services, low systems reliability or poor directional performance in…
Related Case Study
-
By Mitigating Motor Failures and the Associated Time Lost, Operator Saved $105,000 Per Well
H&P Technology Helped Increase Lateral Slide ROP by 120% and Make a One-Run Lateral Curve Possible
-
Operator saves 2.38 days of drilling time, equating to a savings of over $140,000 per well
Head-to-head comparison proves science-based directional drilling approach enhanced bit and BHA integrity and reduced time to target Challenge A major operator was drilling in the…
-
Operator increases rotating ROP and enhances bit and BHA integrity with Flexdrillยฎ technology
ChallengeAn operator drilling out of the Meramec formation in Oklahoma historically struggled with suboptimal rates of penetration (ROP) due to stick slip and whirl. It…
Related Product Literature
-
FlexB2Dยฎ 2.0 technology | Fact Sheet
Fill out the form below to access the fact sheet
-
StallAssistยฎ software | Fact Sheet
Detect, mitigate, and recover from downhole stalls This technology can help decrease sidetracks or lost in hole occurrences and increase motor and bit longevity, translating…