How Motor Bend Affects Stick-Slip Vibrations: Modeling and Case Study
SPE-210483-MSDavid Watt; Ngoc-Ha Dao; Mohamed Mahjoub; Stephane Menand; Mark Smith
Abstract
Contact friction along drill string is one of root causes of stick-slip vibrations, especially when drilling an unconventional well with a long lateral section. By using a downhole steerable motor in rotating mode, the motor bend can create important contact forces between the drill string and wellbore and consequently generate considerable frictional torques opposed to the drill string rotation. Therefore, for more accurate estimations of stick-slip behavior, these forces need to be considered in stick-slip modeling.
In this paper, a torsional vibration model based on a mass-spring system with multiple degrees-of-freedom is used to investigate the drill string stick-slip behavior. This stick-slip model includes the drill bit friction torque, contact friction along the drill string, and mud damping. The contact forces along drill string are determined using an advanced 3D drill string behavior model allowing to consider the motor bend effect. They are then integrated in the torsional equation of motion of the stick-slip model. A case study is carried out to show the consistency between the simulated results and field data.
Stick-slip is a highly damaging dysfunction that adversely effects all components of the drill string. In the case of this paper, the subject well experienced high stick-slip resulting in inefficient drilling and increased risk of equipment failure. Modelling of the drill string successfully replicated the stick-slip response observed at the rig site. Further modelling with consideration of the motor bend angle’s effect successfully showed a reduction in stick-slip magnitude.
Considering the motor bend in the stick-slip model is the novelty of this work. This allows to determine more accurately the contact forces on the bottom-hole assembly (BHA), which directly influence the drill string stick-slip behavior. This work can provide a tool for the design of the BHA with a downhole steerable motor to mitigate stick-slip vibrations and lead to significant improvements of the bit performance and rate of penetration.
Related Technical Publications
-
Casing Wear and Stiff String Modeling Sensitivity Analysis – The Contribution of DP Pipe-Body and Tool-Joint on Casing Contact
Abstract Casing wear due to pipe body and tool-joint of Range 2 and Range 3 DP is compared using a stiff-string torque & drag &…
-
Fatigue Tracking for Mud Motors and MWDs in Unconventional Wells
Abstract As the industry continues to drill increasingly complex wells, the demand put on drilling equipment has increased and will continue to increase. Preventive maintenance…
-
Learning Curve Benefits Resulting From the Use of a Unique BHA Directional Behavior Drilling Performances Post-Analysis
Abstract With the current marketโs high prices for drilling units and sophisticated directional and formation assessment services, low systems reliability or poor directional performance in…
Related Case Study
-
By Mitigating Motor Failures and the Associated Time Lost, Operator Saved $105,000 Per Well
H&P Technology Helped Increase Lateral Slide ROP by 120% and Make a One-Run Lateral Curve Possible
-
Operator saves 2.38 days of drilling time, equating to a savings of over $140,000 per well
Head-to-head comparison proves science-based directional drilling approach enhanced bit and BHA integrity and reduced time to target Challenge A major operator was drilling in the…
-
Operator increases rotating ROP and enhances bit and BHA integrity with Flexdrillยฎ technology
ChallengeAn operator drilling out of the Meramec formation in Oklahoma historically struggled with suboptimal rates of penetration (ROP) due to stick slip and whirl. It…