Ensuring Success of Complex Liner Deployment Over Complete Field Development Campaign
SPE-204073-MSLoรฏc Brillaud; Florent Couliou; Kim Mathisen; Tom Rune Kolรธy; Chloรฉ Lacaze; Efficience Balou; Manfred Bledou; Gรฉraud Delabrousse-Mayoux; Pierre-Marie Drevillon
Abstract
This paper describes the innovative engineering workflow which has been used to ensure the safe deployment of deep production liners on long step-out wells of a deep offshore development field.
It highlights the importance of accurate Torque & Drag modelling during planning and operations and provides details on how the use of downhole data assisted in understanding downhole conditions on the first wells, which allowed to optimize the running and setting procedure for the next wells of the field.
For this methodology, a unique Torque & Drag stiff-string model was used to simulate the evolution of side-forces, tension, stretch, torque and twist along the string at every stage of the deployment and setting of the liner. Simulations were performed both during planning phase and operations. Once the well completed, downhole memory data from a logging tool was compared with simulations, which allowed to calibrate the model, better understand downhole conditions, and provide recommendations for the next runs.
Using this methodology, the operator succeeded in deploying the liner to total depth, setting the hanger and packer successfully on all the wells of the field. These operations were performed with only 40 minutes of non-productive time throughout the campaign. The paper shows how correlating downhole data with Torque & Drag simulations highlighted areas of improvement and allowed to optimize the running and setting procedure of the liner. It also led the operator to gain confidence in the feasibility of such critical operations even on the more challenging wells. Detailed engineering and collaboration were key to this success. Such methodology can be applied on every well where weight transfer is a potential issue.
As the industry is heading towards digitalization and automation, this case study is a prime example which demonstrates the added value of combining advanced physics-based simulations with time based downhole data.
Related Technical Publications
-
Casing Wear and Stiff String Modeling Sensitivity Analysis – The Contribution of DP Pipe-Body and Tool-Joint on Casing Contact
Abstract Casing wear due to pipe body and tool-joint of Range 2 and Range 3 DP is compared using a stiff-string torque & drag &…
-
Fatigue Tracking for Mud Motors and MWDs in Unconventional Wells
Abstract As the industry continues to drill increasingly complex wells, the demand put on drilling equipment has increased and will continue to increase. Preventive maintenance…
-
Learning Curve Benefits Resulting From the Use of a Unique BHA Directional Behavior Drilling Performances Post-Analysis
Abstract With the current marketโs high prices for drilling units and sophisticated directional and formation assessment services, low systems reliability or poor directional performance in…
Related Case Study
-
By Mitigating Motor Failures and the Associated Time Lost, Operator Saved $105,000 Per Well
H&P Technology Helped Increase Lateral Slide ROP by 120% and Make a One-Run Lateral Curve Possible
-
Operator saves 2.38 days of drilling time, equating to a savings of over $140,000 per well
Head-to-head comparison proves science-based directional drilling approach enhanced bit and BHA integrity and reduced time to target Challenge A major operator was drilling in the…
-
Operator increases rotating ROP and enhances bit and BHA integrity with Flexdrillยฎ technology
ChallengeAn operator drilling out of the Meramec formation in Oklahoma historically struggled with suboptimal rates of penetration (ROP) due to stick slip and whirl. It…