Detailed Dynamics Modeling Helps to Assess the Effect of Stabilizer Design on Drillstring Vibrations
SPE-212549-MSKhac-Long Nguyen; Mohamed Mahjoub; Ngoc-Ha Dao; Stรฉphane Menand
Abstract
Various stabilizer types are used in the industry, such as bladed stabilizers with straight or spiral blades, roller-reamers, and other emergent forms. Their designs are proved, via many in-field measurements, to have a significant impact on vibration levels. Although experimental data is extremely valuable to rank the available design options, testing the different stabilizers can be costly and sometimes risky. In addition, in-field conditions can be difficult to control making the comparisons between stabilizers even more complicated. Assessing the design impact using numerical simulations represents an interesting alternative to provide objective comparisons based on tests in a controlled environment.
When a stabilizer is rotating, the contact forces between its different blades and the wellbore are transient. A static approach like torque and drag or directional models is then insufficient to properly investigate the stabilizer’s design characteristics. Therefore, a time domain dynamics approach is adopted in this work. A detailed modeling of bladed stabilizers including the blade geometry (number of blades, spirality, and blade width) and friction characteristics are introduced in an existing time-domain model. These characteristics are used to compute the contact forces between the wellbore and each individual blade.
This numerical model is applied to quantify the effect of stabilizer design in terms of vibration, from straight blades to highly spiraled blades. First, a parametric study of blade design and wellbore inclination effects on stabilizer vibrations is presented by considering different stabilizers in straight well conditions. Simulations of an actual drill string configuration in an unconventional well is discussed. For vertical, curved, and horizontal sections, the acceleration levels, contact forces, and rotation speeds are investigated. These analyses can constitute guidelines about stabilizer design to minimize vibrations.
The novelty of this work is to introduce the geometry details of the stabilizers in the time domain dynamics to differentiate designs in terms of likelihood to trigger vibrations.
Related Technical Publications
-
Casing Wear and Stiff String Modeling Sensitivity Analysis – The Contribution of DP Pipe-Body and Tool-Joint on Casing Contact
Abstract Casing wear due to pipe body and tool-joint of Range 2 and Range 3 DP is compared using a stiff-string torque & drag &…
-
Fatigue Tracking for Mud Motors and MWDs in Unconventional Wells
Abstract As the industry continues to drill increasingly complex wells, the demand put on drilling equipment has increased and will continue to increase. Preventive maintenance…
-
Learning Curve Benefits Resulting From the Use of a Unique BHA Directional Behavior Drilling Performances Post-Analysis
Abstract With the current marketโs high prices for drilling units and sophisticated directional and formation assessment services, low systems reliability or poor directional performance in…
Related Case Study
-
By Mitigating Motor Failures and the Associated Time Lost, Operator Saved $105,000 Per Well
H&P Technology Helped Increase Lateral Slide ROP by 120% and Make a One-Run Lateral Curve Possible
-
Operator saves 2.38 days of drilling time, equating to a savings of over $140,000 per well
Head-to-head comparison proves science-based directional drilling approach enhanced bit and BHA integrity and reduced time to target Challenge A major operator was drilling in the…
-
Operator increases rotating ROP and enhances bit and BHA integrity with Flexdrillยฎ technology
ChallengeAn operator drilling out of the Meramec formation in Oklahoma historically struggled with suboptimal rates of penetration (ROP) due to stick slip and whirl. It…